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Flow of elastic compressible spheres in tubes 
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(Received 20 March 1979) 

The flow of closely fitting neutrally buoyant elastic spheres through a circular 
cylindrical tube is considered under the assumptions that the Reynolds’ equation is 
valid in the fluid and equations of linear elasticity hold in the solid. Computations are 
carried out for several values of Poisson’s ratio. The results are compared with the 
results of previous models on elastic compressible particles. 

1. Introduction 
The literature on flow of closely Sitting particles in tubes has developed largely as 

models of blood flow in capillaries. The initial studies in this field assumed rigid 
particles as models of blood cells and axisymmetric Stokes flow [see Goldsmith & 
Skalak (1975) for references]. These studies showed the geometry of the particle in 
the vicinity of the tube wall was most important in determining the pressure drop 
whereas the shape of the rest of the particle and particle spacing had minor influence. 

The studies on flow of deformable particles in tubes were initiated by Lighthill 
(1968) and Fitz-Gerald (1969). They applied lubrication theory to analyse the axi- 
symmetric flow of neutrally buoyant compressible particles in fluid-filled tubes. These 
compressible particles are assumed to undergo radial deflexions proportional to the 
local pressure. This model was originally suggested as a model of flow of red cells in 
narrow capillaries. Tozeren & Skalak (1978) investigated the steady motion of elastic 
incompressible spheres through cylindrical tubes. Their study was motivated by an 
interest in the flow of white blood cells in narrow capillary blood vessels. 

The present paper is an extension of the previous study under more general assump- 
tions regarding the elastic properties of the particles. Solutions are obtained for 
several different values of Poisson’s ratio and for the range of diameter ratios (particle 
to tube diameter) between 0.9 and 1.05. The elastic deformations are then of the 
order of 5 yo so the linear theory of elasticity is a reasonable approximation. 

The suspending fluid is assumed to be incompressible and Newtonian. Inertial 
effects are neglected and only neutrally buoyant particles are considered. The fluid 
layer between the particle and the tube is assumed to be sufficiently small so that 
Stokes equation can be reduced to the Reynolds equation. The lubrication theory 
is known to give accurate results for closely fitting rigid particles (Skalak et al. 1972). 

In 0 2 the Reynolds equation is formulated and a series solution for displacements 
of elastic spheres is developed. In  9 3, the numerical results are discussed and compared 
with the model due to Lighthill (1968) and Fitz-Gerald (1969). 
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FIUIJRE 1. Elastic particles having a spherical shape in the unstressed state 
translate concentrically through a circular cylindor. 

2. Formulation 
Consider a line of spherical particles of radius a when unstressed, located axi- 

symmetrically in a tube of radius ro (figure l). In a previous paper (Tozeren & Skalak 
1978) it  was shown that a unique solution can be found for incompressible particles 
for given initial diameter ratio a/ro, shear modulus G ,  fluid viscosity p, and pressure 
drop across the particle Ap. The solutions apply for any case of a given Ap, even 
though the mean pressure varies, say by raising both upstream and downstream 
pressure equally. 

The case of compressible particles to be treated here differs from the incompressible 
case in that a change of the mean pressure level changes the volume and radius of the 
particles. A uniform pressure p' produces a radial displacement - ( p ' / 3 ~ )  a' of the 
surface of an elastic sphere, where a' denotes the initial radius of the sphere and K is its 
bulk modulus. Now consider such a sphere in a tube and suppose that for some specified 
values of a/ro, p, G ,  K and Ap it  happens that mean pressure on the sphere vanishes so 
pm = 0.  This solution may also be used to solve certain cases with p m  =+= 0. Suppose 
there is a sphere of radius a' (when unstressed) related to the solution above by 

a' = a( 1 +pm/3K), (2.1) 

where pm is a mean pressure different from zero. The solution for the same G ,  K ,  p and 
Ap as before will be U ,  V and 

(2.2) u' = u - ( p , / 3 ~ )  ae,., 

where U ,  V and u are the solutions with pm = 0 mentioned above. This use of the 
solutions with p ,  = 0 is permissible because the displacements are superposable under 
the assumptions of theory of linear elasticity. This point will be further considered in 
3 3.  The formulation below is given under the assumption that pm = 0. A family of 
such solutions is sufficient to evaluate all cases with pad =+= 0 also. 

and hence 
the fluid inertial terms are negligible. The motion of suspending fluid is considered to 
be a steady Stokes flow relative to the particle. The fluid film thickness between the 
particle and the tube is assumed to be small compared to tube radius. Under this 

The Reynolds number in microcirculation is typically of the order of 
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assumption the Stokes equations and the equations of continuity can be reduced to 
the Reynolds equation (Fitz-Gerald 1969). When referred to the cylindrical CO- 

ordinate system (R,  $, z )  fixedrelative to the particle the Reynolds equation is (Tozeren 
& Skalak 1978) 

In (1 - h/ro) 

where ro is the tube radius, h is the thickness of the lubrication layer, U is the particle 
velocity and 

(2.4) 
is the leakback. 

It is assumed that the resultant force on the particle due to pressures and viscous 
stresses exerted by the fluid is equal to zero. This condition of zero drag on the 
neutrally buoyant particle is formulated by considering the equilibrium of a control 
volume bounded by the tube wall, particle surface and two planes tangential to the 
particle at  the downstream and upstream ends (Tozeren & Skalak 1978) : 

Q = +ro( U - V )  

7 W P (  - a )  --Ha)] = 2n r0[7RzlR=rod~. (2.5) s:. 
The solutions of equations of equilibrium of an elastic sphere in terms of series of 

spherical harmonics were considered by Love (1944). The series expansion for displace- 
ment u of an elastic sphere subject to purely radial surface tractions are given in Q172 
and 173 (ii) of Love (1944). The problem of an elastic sphere subject to purely tangential 
surface tractions can be treated similarly. The relationship between the solid spherical 
harmonics w, and $, which are used to express u (equations (172.5) and (172.8) of 
Love (1944)l and the stress vector P, acting across a spherical surface with radius a 
can be found by solving the equation 

P,.e,=O on r = a ,  (2.6) 

where e, is the unit radial vector. Substitutions of Love’s equations (172.12) and 
(172.13) which express P, in terms of w, and $,in (2.6) yields the relationship between 
w, and 4, in this case as 

where 
$, = D(n) a2wn, 

7 (2.7) 
n(2n+an)+2n((h/G)+ l )+a , { (n+3) (h /G)+ (n+2) } .  

2n(n - 1) 
D(n) = - 

a, is defined by (172.7) of Love (1944), h is the first Lam6 constant and G is the shear 
modulus of the elastic particle. 

In the case of axisymmetric deformations, the harmonic functions w, and $, can be 
written as 

(2.8) 

(2.9) 

w n  = y,(r/a), Pn(cos 81, 

$n = Pn(r/aIn P,(cos 01, 

in spherical co-ordinates ( r ,  8, $), where P, (cos 8) is the Legendre function of order n. 
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When the tangential surface tractions Pro are specified, the coefficients of the series 
expansion of P,e in terms of derivatives of Legendre functions can be used to determine 

(2.10) 
y, and p,. Let 00 

cosec 0 = G A,- r(n + ‘ 1  p;,,(cOs e), 
n=l r ( n + 3 )  

where (2.11) 
J O  

and is the gamma function. Then using equations (172.12) and (172.13) of Love 
(1 944) Y 

(2.12) 

where E(n) is given by 

E(n) = 2n(h/G + 1) +a,{(. + 3) h / G  + (n + 2)} ,  (2.13) 

and the displacement u at r = a can be found as 

00 

u = a z {(l+D(n))y,{(P;e,-P;-le,)+a,y,Pner} (2.14) 

at r = a by substituting (2.7)-(2.9) and (2.12) into (172.5) and (172.8) of Love (1944). 
The solution for an elastic sphere with purely radial surface tractions is given in 

8 173 (ii) of Love (1944) as 

n=2 

2n f an 
2(n -  1) 

n 
G E ( n )  w,  = B, (5) P,, 6, = -- a2u, (2.15) 

for n $. 1,  where B, is the coefficient of P, (cos 0)  in the Legendre series expansion for 
radial surface tractions. 

The terms of first degree are not included in (2.10) and (2.15). These are the only 
components in the series expansions which would have non-zero resultant on the 
particle. The resultants of normal and tangential tractions are equal and opposite if 
the condition of zero drag on the particle is satisfied. The solutions for this case can be 
obtained from the equations given in 8 173 (i) of Love (1944) by setting n = 1 : 

u = a,aw,e,  at r = a, (2.16) 

P, = G(2 + a,) aVw,+ G E ( n )  (r/a) w,  a t  r = a, (2.17) 

where E(n) is defined by (2.13). 

less variables : 
The preceding equations are non-dimensionalized by using the following dimension- 

F = r/a = dimensionless position vector, 

5 = h/r, = dimensionless clearance, 

27 = p / G  = dimensionless fluid pressure, 

3ij = cij/G = dimensionless stress tensor, 

and the dimensionless parameters 

A = ,uUa/G$ = velocity parameter, 

hi = a/ro = initial diameter ratio, 

C = 2Q/Ur0  = leakback parameter. 
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The Reynolds equation and condition of zero drag in dimensionless form are 

(2 .19)  

Equations (2.10)-(2.19) are coupled by the requirements that: 
(i) along the particle surface the stress vector is continuous 

n.u, = n . q ,  (2.20) 

where n is the unit normal vector on the surface and s and f indicate solid and fluid 
regions; 

(ii) the gap thickness h is dependent on the surface displacements 

h = r o - R p - U R ,  (2 .21)  

where Rp is the radial co-ordinate of the undeformed particle surface and uR is the 
displacement in R direction along R = R, surface. In (2 .21)  the axial deflexion is 
neglected on grounds that the slopes involved are small. 

The system of equations (2.10)-(2.19) may be solved by a procedure of successive 
approximations for the unknowns : the displacement vector 5,  dimensionless pressure 
f3 and A or C whichever is not specified. 

In order to start the numerical iteration procedure, suppose that the steady-state 
surface shape of the particle is estimated. Then, the Reynolds equation (2 .18 ) ,  the 
condition of zero drag (2 .19)  can be solved under the condition that the mean pressure 
is equal to zero to yield the pressures and viscous stresses in the fluid. These stresses 
are then applied to the particle and the displacements are re-computed. The particle 
thus may attain a different surface shape than the previous approximation. A com- 
bination of previous and current surface shapes which facilitates numerical stability 
is then adopted for the determination of pressures at the next step of successive 
approximations. The computational cycle is repeated until the changes in displace- 
ments become sufficiently small compared to the magnitude of the current approxi- 
mation to the displacements. 

3. Numerical results 
The numerical procedure formulated in $ 2  is used to study the motion of elastic 

spheres for the particular cases of Poisson's ratio a = 0 and (+ = 4. The incompressible 
elastic particle case (a = 4) was treated previously by Tozeren & Skalak (1978) .  The 
initial diameter ratio hi and the velocity parameter A are specified and the deforma- 
tions of the elastic particle, the leakback parameter C and the dimensionless pressure 
drop Ai5 are computed. The computations are carried out under the condition pnt = 0 
as mentioned in $ 2. However, the superposition principle of linear elasticity makes it 
possible to use the numerical results for this case in solving cases which involve non- 
zero mean pressure. This will be illustrated below. 

In addition to the dimensionless parameters defined earlier, the relative apparent 
viscosity defined by 

(3 .1)  7 = A P / ( W w r ; )  
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FIGURE 2.  Relative apparent viscosity 7 vs. initial diameter ratio Ai for several constant values 
of A .  The spacing between the particles is one particle diameter d = 2a and the mean pressure 
on the particle is equal to zero p m  = 0. (a) IY = 0 ;  (b )  IY = B; (c )  v = 4 (incompressible particles). 

is used in presentation of the numerical results. As defined by (3.1), 7 applies to a line 
of spheres in contact with each other. The 7 for arbitrary particle spacings can be 
approximated by averaging the results given here for a line of spheres that are just 
touching each other with 7 = 1 for the spaces between the particles. 

Figure 2 shows 7 as a function of A and hi for u = 0, 4 and 4 respectively. A numerical 
error in computer programs used by Tozeren & Skalak (1978) is corrected so figure 4 
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of that paper differs slightly from figure 1 (c). The curve A = 0 gives the solutions for 
a rigid sphere. The differences between A = constant curves increase for higher values 
of hi for all c. This is due to the elastic deformations of the particle, which are much 
larger than the thickness of the fluid film for greater values of Ai. For fixed A and hi, 
the values of 7 decrease as a decreases from 4 to 0. For example, for A, = 1.04 and 
A = 10-4, the 7 values are approximately 17,15 and 13 for v = t, t and 0 respectively. 
The differences between these curves would have decreased if Young's modulus E 
rather than shear modulus G were used in non-dimensionalization as the &st para- 
meter involving elasticity. The value of E ( E  = 2( 1 + a) G) increases by a factor of # as 
(T varies between 0 and 4 for a fixed value of G .  For example, for the fixed value of 
(pUa/Eri)  = 0.5 x 10-4 ( A  = (pUa/Gri) = for a = 0) and Ai = 1 . 0 4 , ~  is equal to 
14.5, 14 and 13 for a = 4, 4 and 0. So, it appears that the behaviour of the curves is 
strongly dependent on E but not on a. This behaviour is similar to the case of contact 
between elastic bodies in which the deformation is dependent on the elastic properties 
through a factor (1 - cZ)/E [see equation (138.57), Love (1944)l. This factor varies only 
25 yo for E fixed and 0 < a < 8. In  the present case, the results are not exactly pro- 
portional to ( 1  - a2) /E;  but we certainly expect this to be a reasonable approximation 
when (i) A is very small (G -+ co), (ii) a is slightly greater than ro so the dimensions of 
the contact (compressed) area are very small and (iii) the gap thickness is much smaller 
than the displacements of the particle in contact area. Under these conditions, there 
have been successful applications of contact theory of elasticity to lubrication problems 
(Cameron 1966). 

The curves of C versus hi for constant values of A are shown in figure 3 for a = 0, 
and 4, The average velocity V is equal to U (  1 - C) so when U is given these curves can 
be used to determine V .  For smaller values of hi the elastic deformations are much less 
compared to the thickness of the fluid film. Hence, all C versus hi curves approach the 
curve for rigid spheres ( A  = 0) which may be approximated by using the asymptotic 
relation between C and h = 1 -hi derived by Bungay & Brenner (1973) for rigid 
spheres: c = $K-3p+o(K3) as K +  0. ( 3 4  

Some information about particle deformations and fluid film thicknesses is given 
in figure 4. The variable Af is the maximum radius of the particle after deformations 
non-dimensionalized by ro. The A = 0 curves corresponding to rigid spheres are 45" 
straight lines (no deformation). The difference between this line and A = constant 
curves gives the elastic displacement approximately a t  the location where fluid film 
thickness is minimum. This minimum film thickness is given by the difference between 
hf = 1 line and A = constant curves. For a constant A ,  the value of A, decreases as a 
decreases from 4 to 0. The difference between these curves would be reduced if E 
rather than G were used in definition of A according to the discussion given above. As 
hi decreases, all A = constant curves approach the A = 0 line. For higher values of hi 
the elastic deformations become greater and (hi - A,) increase. The successive approxi- 
mation procedure described in $ 2  is not convergent when f i  is less than 0.005 (or 
hf > 0.995). It is therefore not possible to make a definitive statement whether or not 
hf ever becomes equal to unity, in which case 7 would be infinite. It would be more 
appropriate to use the contact theory of elasticity to investigate this limit. Such an 
approach would be valid in the vicinity of the corner where the A = 0 curves intersect 
the line Af = 1. 
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FIGURE 3. For legend see facing page. 

The other two sets of curves of interest are yversus hi and fi( - a )  versus hi for 
for Afi = constant curves shown in figures 5 and 6. These curves are convenient to solve 
certain physical problems. Before giving specific examples, these curves will be 
discussed briefly. 

The 7 versus hi for Afi = constant curves are similar to curves given in figure 2. For 
fixed hi and A@, the drag on the elastic particle is greater for higher values of CT. These 
curves show that for a fixed A@ both y and the derivative of y with respect to hi 
increase as Ai increases; so there may be a limiting AT for a fixed A@ that y may tend to 
infinity while Afi = constant. The curve would have a vertical asymptote hi = A; for 
which A ,  would asymptotically tend to 1.  
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FIGURE 3. The leakback parameter C = 2Q/Ur vs. initial diameter ratio hi for constant values 
of A .  The mean pressure on the sphere is equal to zero, p ,  = 0. (a)  CT = 0; ( b )  u = 4; ( c )  u = + 
(incompressible particles). 
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FIUURE 4. For legend see overleaf. 
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FIGURE 4. The final diameter ratio A, us. initial diameter ratio hi for several values of A. The 
curves m e  obtained under the assumption that pm = 0. (a)  u = 0; (b )  u = &; (c )  u = 4 (incom- 
pressible particles). 

It was mentioned above that all the curves are obtained for the casepm = 0. In  this 
case the upstream pressure (the initial condition for pressure when integrating the 
Reynolds equation) may not be specified arbitrarily. The information regarding the 
upstream pressure $( - a )  is given in figure 6 ( a )  and ( b )  for g = 0 and a. For a rigid 
sphere, if $( - a )  is chosen as 9Afi the lubrication pressures would be antisymmetric 
with respect to origin due to the symmetry. Hence p m  = 0 for this case. Accordingly, 
for hi small (when elastic deformations are small) all $( -a )  versus hi curves (for fixed 
A$) approach to @ ( - a )  = &A$. But the pressure curves for greater hi values (see 
figures 2 and 7 of Tozeren & Skalak, 1978) are less symmetric than those of rigid 
spheres. In  these cases there is a pressure buildup especially in a region where particle 
radius is greater than tube radius to produce the required deformations of the 
particle. Hence, in order to satisfy the condition p m  = 0, the integration of Reynold’s 
equation must be started with negative values for upstream pressure (@( -a)  c 0). This 
explains the small negative regions of figures 6 (a )  and ( b ) .  

A numerical example is solved below to demonstrate how figures 5 and 6 and the 
superposition principle are used in solving numerical problems. 

Let the material constants, initial particle and tube geometry and pressure drop be 
specified. The particle velocity, average velocity and minimum gap thickness are to 
be determined. The material constants are: 

G = lo5 dyne/cm2, ,u = 1.2 x poise, 

g = $ 9  

Ap = 5 x lo3 dyne/cm2 z 5cmH,O, 

pu = upstream pressure = 1.25 x lo4 dyne/cm2, 

a’ = particle radius = 4.2,um = 4.2 x 10-4cm, 

r, = tube radius = 4 x cm, 
~ ‘ / r , ,  = 1.05. 

(These values are in the range of a white blood cell in a small capillary blood vessel.) 
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FIGURE 5. The relative apparent viscosity 1 as a function of initial diameter ratio hi and dimen- 
sionless pressure drop Ap = A;/G. The spacing between the particles is one particle diameter 
d = 2a and the mean pressure on the particle is equal to zero, p m  = 0. (a) u = 0; ( b )  CT = &; 
( c )  CT = + (incompressible particles). 

Let p ,  be the unknown mean pressure. Under pm the particle with radius a' will 
deform and assume a new radius a 

or in this particular case using 3~ = gG, 

Consider now the rest of the lubrication pressures (with mean equal to zero) having an 
upstream value as the unknown p(  - a) .  The addition of p (  - a)  to p ,  must give p u  : 

P m  = P , - P ( - ~ ) *  (3.5) 

Substituting (3.5) into (3.4), one equation in two unknowns hi and f5( -a )  is obtained. 
The other equation involving hi and p (  - a)  is given by A@ = 0.05 curve of figure 6 (b ) .  
The solution of these two equations by trial and error yield 

hi = 1.0195, @ ( - a )  = - 0.0195. 
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Using 7 versus hi curve A@ = 0.05 (figure 5b)  and hi = 1.0195, 7 can be found as 7-5. 
Then, using the 7 versus hi curve for fixed A (figure 2 b )  for 7 = 7-5 and hi = 1.0195 A 
can be determined: 

The use of figure 3 ( b )  and figure 4(b) for A = 4.481 x 10-4 and hi = 1,0195 yields 

A = 4.481 x 

C = 0.0207 and hf = 0.9844. 

Then 

V = U(1-C) = 1.394cms-1 

h = (1 - h f ) a  = 6.552 x 10-2,um. and 

These velocities are high for blood flow, but they illustrate the procedure. With most 
other combinations of initial data, the solutions using the curves will be found to be 
more direct. It is of interest to compare the results obtained above with the studies of 
Lighthill (1968) and Fitz-Gerald (1969). An error in their formulation of zero-drag 
condition was pointed out previously (Tozeren & Skalak 1978). The capillary flow for 
their model is solved using the correct zero-drag condition and extensive numerical 
results are obtained below. Some dimensionless variables used in their studies are 

A’ = ,dJP/r;(kro)*, 

and J 
where ,8 = compliance of the particle, k = the curvature at  the point of contact between 
the tube and the particle, po = the reference pressure, and - g  = oo-ordinate ofup- 
stream end of the particle. 

The dimensionless upstream pressure P( - G )  versus A’ curves for constant values of 
C are given in figure 7. This information about P( - G )  is important because when A 
and C are specified, the lubrication pressures (and shear stresses) obtained by 
integrating Reynolds’ equation using as initial condition the P( - G )  obtained from 
figure 7 satisfy the zero-drag condition. 

Figure 8 shows D’ versus F‘ curves for constant values of A’ and of C. Some of these 
curves were given by Tozeren & Skalak (1  978) in figure 3. Figure 8 gives more extensive 
data. 

To compare the results of corrected Lighthill-Fitz-Gerald theory of figures 7 and 8 
to the elastic sphere solutions, it  is necessary to recast the latter in similar dimensionless 
variables. For fixed A and C, it is shown above that the solutions for an elastic sphere 
under the conditionp, = 0 can be generalized to elastic spheres of different sizes if the 
upstream pressure is adjusted accordingly. The sphere with radius equal to ro is 
included in this group. The uniform pressure required to deform a sphere with radius 
ro into a sphere with radius a is given as [see equation (3.3)]: 

p k  = 3 4  1 - a/ro). (3.7) 
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Let p (  -a )  and p’( -a)  denote the upstream pressures for (i) the sphere with radius 
a (p ,  = 0) and (ii) the sphere with radius ro (p ,  = pj , ) .  The difference between these 
pressures must be equal to the mean pressure in the second case: 

Using (3.7) and (3.8) 

Then, it is possible to calculate the analogue of F‘ by using (3.9) and figure 6:  

p‘( -a)  = pj ,  + p (  -a). 

p’( - a )  - p (  -a) = 3 4  1 -hi). 

(3.8) 

(3.9) 

F = (P’( - a) +p‘(a))/2G, (3.10) 

wherep’(a) = p‘(  -a) + Apandusing Gin (3.10)inplaceof/3/r0in (3.6). The formulation 
of D in terms of dimensionless parameters used in this study is more straightforward: 
Define 

D = Ap/ (pU/y0)  = (A$/A)Ai. (3.11) 

In  (3.1 1 )  we need only to identify k = r;l for a sphere to correlate with (3.6). Using the 
definitions (3.10), (3.11), the curves in figure 2 involving parameters hi and 7 can be 
converted into D versus F curves for A = constant. The A ,  J’ and D used here are all 
similar parameters to Lighthill’s A’, P’ and D’; the only difference is here G rather 
than rO/p  is used in the definition of the dimensionless parameters. 
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FIGURE 6. The dimensionless upstream pressure F( -a )  as a function of initial diameter ratio hi 
and dimensionless pressure drop AF. The mean pressure p ,  on the particle is equal to zero. 
(a) 0. = 0; ( b )  (T = a. 

Figures 9 and I0 show Fversus D curves for several values of A and for v = 0 
(figure 9) and (T = & (figure 10). Although the range of D is the same, the curves for 
elastic compressible particles (figures 9 and 10) which are concave downwards differ 
from the corresponding curves for the model of Lighthill (1968) and Fitz-Gerald (1969) 
which are concave upwards shown in figure 8. The reason is that the linear relationship 
between the pressures and radial deflexions used in their model is not a good approxi- 
mation for elastic particles even in the vicinity of the point where the film thickness 
attains its minimum. 
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FIGURE 8. The D’ us. P’ curves for several constant values of A‘ and C .  

The above comparison indicates that the parameter, F ,  introduced by Lighthill and 
Fitz-Gerald is analogous to the unstressed diameter ratio, hi, used in the present 
paper. The use of the parameters of Lighthill and Fitz-Gerald or the set used in the 
present paper is optional in the sense that the general case of any initial size of particle 
and mean pressure may be treated using the curves for either formulation presented 
above by the appropriate superpositions of mean pressure. 

The results of the corrected Lighthill-Fitz-Gerald theory (figure 8) are of the same 
order of magnitude as the present results for elastic spheres when similar parameter 
values are used (figures 9 and 10). However, there is a qualitative difference for 
particles which are larger than the tube when unstressed ( F  < 0 in figures 8-10) in that 
the curvature of the curves for A’ = constant in figure 8 is of opposite sign to that for 
A = constant in figures 9 and 10. An exact comparison is not possible because the 
choice of particle stiffness /3 (in the Lighthill-Fitz-Gerald theory) which is equivalent 
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FIGURE 9. The D vs. P curves for several values ofA and C . Each particle 
is elastic, having a Poisson’s ratio u = 0. 
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FIGURE 10. The D us. P curves for several constant values of A and C .  Each particle is 

elastic, having a Poisson’s ratio u = ). 

to a given elastic sphere is not unique. It is clear that the behaviour of an elastic sphere 
cannot be precisely represented by the Lighthill-Fitz-Gerald model. Of course, this 
does not rule out the possibility that their model may represent other particles or 
flow geometry more accurately. 

This research was suppor.ted by the U.S. National Institutes of Health through 
Grant HL-16851. 
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